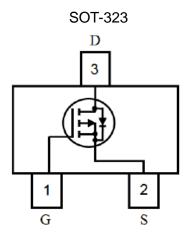


Description

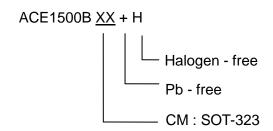
The ACE1500B is P-Channel enhancement mode power MOSFET which is produced with high cell density and DMOS trench technology .This device particularly suits low voltage applications, especially for battery powered circuits, the tiny and thin outline saves PCB consumption.


Features

- V_{DS}(V)=-20V
- I_D=-1.6A (V_{GS}=-4.5V)
- $R_{DS(ON)} < 155 m\Omega (V_{GS} = -4.5V)$
- $R_{DS(ON)} < 168 m\Omega (V_{GS} = -2.5V)$
- $R_{DS(ON)}$ < 220m Ω (V_{GS} =-1.8V)

Absolute Maximum Ratings

<u> </u>								
Parameter	Symbol	Max	Unit					
Drain-Source Voltage	V_{DSS}	-20	V					
Gate-Source Voltage	V_{GSS}	±12	V					
Drain Current (Continuous) T _A =25 °C	nin Current (Continuous) T _A =25°C I _D		۸					
Drain Current (Pulse)	I _{DM}	-5						
Power Dissipation T _A =25°C	P _D	350	mW					
Operating and Storage Temperature Range	$T_{J,}T_{STG}$	-55 to 150	οС					

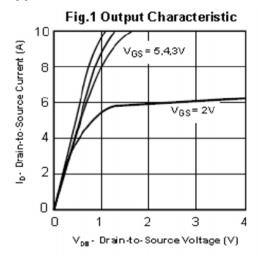

Packaging Type

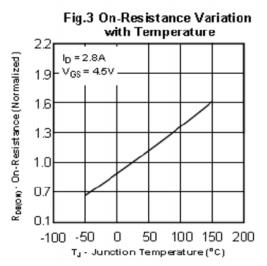
Ordering information

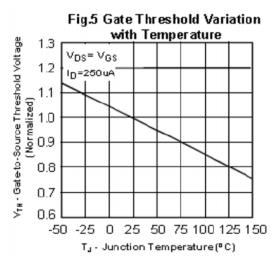
Electrical Characteristics

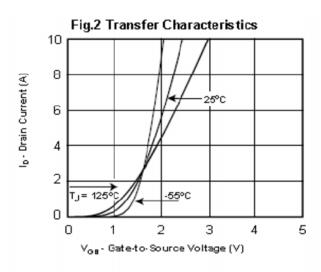
 $T_A \!\!=\!\! 25$ $^{\circ} \! C$ unless otherwise noted

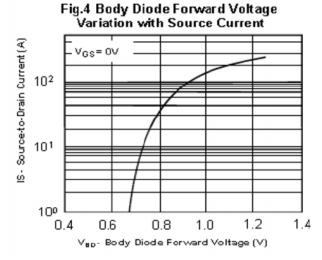
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
Static									
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V_{GS} =0V, I_D =-250uA	-20			V			
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-20V, V_{GS} =0V			-1	uA			
Gate Leakage Current	I _{GSS}	$V_{GS}=\pm 12V$, $V_{DS}=0V$			100	nA			
Static Drain-Source On-Resistance	R _{DS(ON)}	V_{GS} =-4.5V, I_{D} =-1A		145	155	mΩ			
		V_{GS} =-2.5V, I_{D} =-0.5A		150	168				
		V_{GS} =-1.8V, I_{D} =-0.3A		180	220				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250uA$	-0.4	-0.7	-1	V			
Forward Transconductance	g _{FS}	V_{DS} =-5V, I_{D} =-2A		5		S			
Diode Forward Voltage	V_{SD}	I_{SD} =-1.6A, V_{GS} =0V		-0.93	-1.1	V			
Maximum Body-Diode Continuous Current	Is				-1.6	А			
Switching									
Total Gate Charge	Q_g	\/ O\/ O O A		4.9		nC			
Gate-Source Charge	Q_gs	V_{DS} =-6V, I_{D} =-2.8A V_{GS} =-4.5V		0.62					
Gate-Drain Charge	Q_gd	VGS- 4.5 V		1.07					
Turn-On Delay Time	$T_{d(on)}$			10.1		ns			
Turn-On Rise Time	t _f	V_{DS} =-6 V , R_{GEN} =6 Ω ,		4.76					
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =-4.5 V R_{I} =6 Ω		84.1					
Turn-Off Fall Time	t _f	11,1-032		25.2					
Dynamic									
Input Capacitance	C _{iss}			472		pF			
Output Capacitance	C _{oss}	V_{DS} =-6V, V_{GS} =0V f=1MHz		71					
Reverse Transfer Capacitance	C _{rss}	I— I IVII IZ		51					

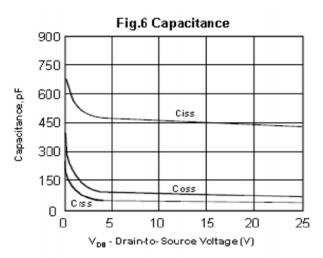

Notes:

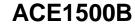

- 1. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- 2. Guaranteed by design, not subject to production testing.

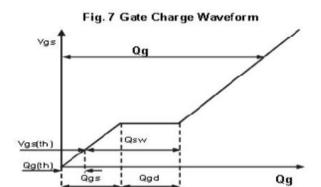





Typical Performance Characteristics







Typical Performance Characteristics

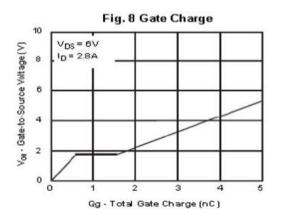
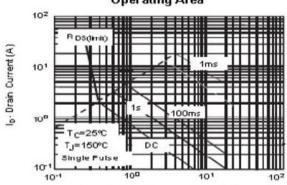
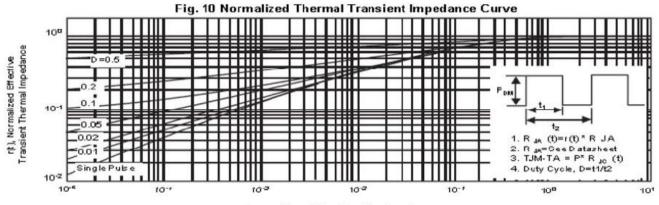
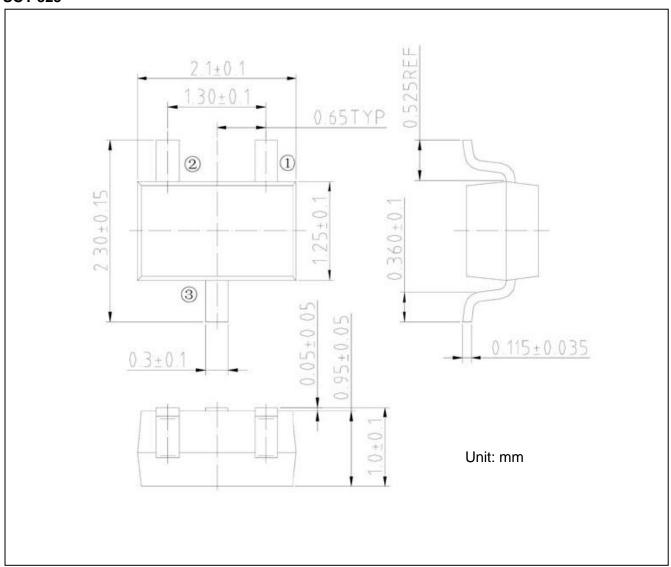




Fig. 9 Maximum Safe Operating Area


Vos - Drain-to-Source Voltage (V)

Packing Information

SOT-323

ACE1500B

P-Channel Enhancement Mode Field Effect Transistor

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/